Telegram Group & Telegram Channel
🌳 Ветки в ML: как работает Random Forest

Если вы слышали про деревья решений, но не понимаете, зачем из них делают целый лес — вот схема, чтобы всё стало на свои места. Random Forest — это ансамбль из деревьев, который работает лучше, чем каждое по отдельности.

📦 Input: признаки (features)
🔁Output: предсказание (class или значение)

Step 1: Bootstrap-агрегация (bagging)
📦 Берём случайные подмножества данных
📦 Тренируем дерево на каждом из них
📦 Повторяем N раз

Step 2: Построение деревьев
📦 На каждой вершине выбираем случайный поднабор признаков
📦 Выбираем лучший сплит
📦 Растим дерево до конца (без обрезки)
📦 Повторяем для всех подмножеств

Step 3: Коллективное решение
📦 Все деревья делают предсказания
📦 Классификация: голосуем большинством
📦 Регрессия: считаем среднее

👉 Что важно:
— Каждое дерево «слепо» и нестабильно, но лес — устойчив
— Метод борется с переобучением
— Работает хорошо даже без тюнинга
— Обожают за explainability (важность признаков и out-of-the-box визуализацию)

🔵 Чтобы знать о машинном обучении все, забирайте наш курс «Базовые модели ML и приложения»

Proglib Academy
#буст
Please open Telegram to view this post
VIEW IN TELEGRAM



tg-me.com/proglib_academy/2772
Create:
Last Update:

🌳 Ветки в ML: как работает Random Forest

Если вы слышали про деревья решений, но не понимаете, зачем из них делают целый лес — вот схема, чтобы всё стало на свои места. Random Forest — это ансамбль из деревьев, который работает лучше, чем каждое по отдельности.

📦 Input: признаки (features)
🔁Output: предсказание (class или значение)

Step 1: Bootstrap-агрегация (bagging)
📦 Берём случайные подмножества данных
📦 Тренируем дерево на каждом из них
📦 Повторяем N раз

Step 2: Построение деревьев
📦 На каждой вершине выбираем случайный поднабор признаков
📦 Выбираем лучший сплит
📦 Растим дерево до конца (без обрезки)
📦 Повторяем для всех подмножеств

Step 3: Коллективное решение
📦 Все деревья делают предсказания
📦 Классификация: голосуем большинством
📦 Регрессия: считаем среднее

👉 Что важно:
— Каждое дерево «слепо» и нестабильно, но лес — устойчив
— Метод борется с переобучением
— Работает хорошо даже без тюнинга
— Обожают за explainability (важность признаков и out-of-the-box визуализацию)

🔵 Чтобы знать о машинном обучении все, забирайте наш курс «Базовые модели ML и приложения»

Proglib Academy
#буст

BY Proglib.academy | IT-курсы


Warning: Undefined variable $i in /var/www/tg-me/post.php on line 283

Share with your friend now:
tg-me.com/proglib_academy/2772

View MORE
Open in Telegram


Proglib academy | IT курсы Telegram | DID YOU KNOW?

Date: |

Find Channels On Telegram?

Telegram is an aspiring new messaging app that’s taking the world by storm. The app is free, fast, and claims to be one of the safest messengers around. It allows people to connect easily, without any boundaries.You can use channels on Telegram, which are similar to Facebook pages. If you’re wondering how to find channels on Telegram, you’re in the right place. Keep reading and you’ll find out how. Also, you’ll learn more about channels, creating channels yourself, and the difference between private and public Telegram channels.

The SSE was the first modern stock exchange to open in China, with trading commencing in 1990. It has now grown to become the largest stock exchange in Asia and the third-largest in the world by market capitalization, which stood at RMB 50.6 trillion (US$7.8 trillion) as of September 2021. Stocks (both A-shares and B-shares), bonds, funds, and derivatives are traded on the exchange. The SEE has two trading boards, the Main Board and the Science and Technology Innovation Board, the latter more commonly known as the STAR Market. The Main Board mainly hosts large, well-established Chinese companies and lists both A-shares and B-shares.

Proglib academy | IT курсы from jp


Telegram Proglib.academy | IT-курсы
FROM USA